Setroubleshoot: A User Friendly Tool to Diagnose AVC Denials

John Dennis
Red Hat

Abstract

Practical experience with the deployment of SELinux has shown it is often disabled in the field negating its

promise. Anecdotal evidence suggests software developers and end users consider it difficult to use, comprehend,

and the root cause of mysterious failures. Perceived as productivity barrier the expedient solution is to disable it. A

new tool has been developed which exposes AVC denials in real time and interacts with a user presenting informa-

tion in a friendly manner explaining the current denial and suggesting possible solutions. Replacing the hidden, of-

ten obscure failures in software which only occur when SELinux is enabled with friendly notification of SELinux's

actions will improve the use experience fostering adoption.

1 Introduction

The adoption of SELinux along with its potential to
vastly improve computer security has been frustrated
by the perception it is more an impediment than a solu-
tion. Software developers, system administrators, and
end users quickly learn enabling SELinux will intro-
duce anomalous behavior into an otherwise functioning
system. This arises when SELinux denies access via an
AVC denial as part of its Mandatory Access Control
(MAC). Unfortunately these denials are typically hid-
den or obtuse when discovered.

AVC denials can occur because the configuration of the
security policy does not match how the software is be-
ing used, because there are bugs in the security policy,
because of problems in the software requesting the re-
source, or because a genuine intrusion was thwarted.
SELinux is still a young technology and experience has
shown most AVC denials during this infancy period
have been the result of one of the first three causes
which can be mitigated provided they are known about.
The AVC denial manifests itself as a software failure
which in practice is either not reported or reported in-
correctly. This is because most current software and
users are only aware of the traditional UNIX Discre-
tionary Access Control (DAC), otherwise generically
known as “permissions”. With luck the AVC denial

may be reported as a permission error by the failing
software. However the problem investigator will often
be confounded by the realization there is no DAC per-
mission problem. It is just as likely the software will
fault with no error messages compounding the frustra-
tion. During problem investigation the advice may be
offered to disable SELinux with the consequence the
system is restored to a functioning state.
The actual cause of the problem may have been record-
ed in a system log as an AVC message such as this:
denied { execmod } for pid=14366
comms="acroread" name="AcroForm.api"
dev=hda2 in0=5619873 scontext=user_u:sys-
tem_r:unconfined_t:s0 tcontext=system_u:ob-
ject_r:lib_t:s0 tclass=file

Very few people after a mysterious failure are trained
to scan log files for AVC denial messages. Even less
have the technical expertise to interpret the message
and translate it into a comprehensible understanding of
the problem leading to a solution. The practical conse-
quence of the hidden nature of the failures and the ob-
tuse audit report is to disable SELinux because it is per-
ceived to be more of an impediment than a valuable se-
curity enhancement.

-1-

2 Problem Solution

We recognized a need to bring AVC denials
out of their hidden recesses into a much more
visible and immediate form. It would be a
clear advantage if the AVC denial was visibly
displayed at the moment it occurred, this helps
users correlate a software failure they are en-
countering with the AVC denial that triggered
it. We also recognized simply reporting the
AVC denial, while an improvement over just
log file entries, was still insufficient to help
users. It would also be necessary to perform
automated analysis of the AVC denial in the
context it occurred in order to explain to the
user in friendly terms what occurred and what
a possible solution might be. We also wanted
an alert mechanism should there be a genuine
security attack in progress which SELinux
was actively thwarting in order to present to
the user in real time a comprehensible inter-
pretation of the violations.
We established several overarching goals:

® Plug-in architecture for analysis modules

® Flexible alert mechanism

® GUI popup notification

® Email notification

® System monitoring integration
Both local & distributed monitoring
Easy review of alerts
No dependencies outside of core Linux

Integration with bug reporting

Query if this alert represents a known problem

3 Architecture

The architecture of setroubleshoot is a traditional
client/server model with a dependency on the audit sub-
system for monitoring. The decision to divide setrou-
bleshoot into client and server components was moti-
vated by the need to run the monitoring component at a
higher level of privilege needed for monitoring. There
also needed to be a central agent which could determine
if an incoming event was new or an instance of an
event previously seen with the ability to store this infor-
mation in a persistent database and then finally to dis-
seminate the alert to interested listeners. The server
component runs as a daemon thus it is named setrou-
bleshootd following UNIX convention.

The server loads a set of analysis plug-ins at start up.
Each plug-in is designed to recognize one or more
classes of AVC denials and to provide explanatory text
and suggested solutions relevant to the denial it recog-
nized.

Clients running as a unprivileged process make a per-
sistent connection to the server identifying themselves
as a unique user. Via an internal RPC protocol clients
can query the server for alerts stored in its database, re-
ceive immediate notification when a new alert fires and
have the server attach per user metadata to the alert
such as a desire to filter alert notifications.

Kernel Auditing

Audit Dispatcher
(audisp)

A\

Server
(setroubleshootd)

plug-ins
EEEER
EEEEN

audit message parsing

plug-in analysis

persistent database
client notifications
Other Client

Alert Client

(sealert)

server communications
desktop notifications

4 Each box represents a seperate
¥
process. Each arrow represents

alert browser socket data flow

Figure 1: Architecture

4 Implementation

Setroubleshoot is written in Python and limits its de-
pendencies to the core packages found in a standard
Red Hat distribution. XML is used to store and trans-
port all data making it amenable to processing by other
tools. The entire system is highly asynchronous, both in
the data capture area and the network protocol ex-
changes. As a consequence both client and server com-
ponents are based on event loops and callbacks. The
plug-ins are also written in Python with a conscious ef-

S0

fort to make authoring them as simple as possible. The
entire system is internationalized and has been translat-
ed into a variety of languages.

4.1 Receipt of AVC Denials

The setroubleshootd server receives information about
AVC denials in real time by making a client socket
connection to the audit dispatcher (audisp). Audit mes-
sages arrive in pieces and are assembled into a single
audit event. If the assembled audit event is an AVC de-
nial the event is placed on a queue for later analysis in a
separate thread. It is also possible to feed the analysis
system with audit events read from a log file. When the
is event placed into the analysis queue it is tagged with
it's disposition so after analysis it can be directed to a
database where all events from the audit message
source are collected. Alert databases permit aggrega-
tion according to the source of the messages, thus there
can be a database for real time messages from the audit
subsystem on a local node, a database built as the result
of scanning a log file, or a database comprising alerts
from all the nodes in a managed group.

4.2 Audit Message Processing

The system receives audit information in real time by
connecting to the audit dispatcher (audisp). Audisp al-
lows for tools other than setroubleshoot to monitor au-
dit messages via a socket connection. The task of audit
monitoring was a non-trivial part of the setroubleshoot
implementation due to the following issues:

There is a limited amount of buffering available for au-
dit messages being emitted from the kernel. The audit
listener must dequeue the messages quickly or it runs
the chance of losing data therefore the part of setrou-
bleshootd which listens for audit messages executes in
its own thread because the main setroubleshootd thread
might be busy running an analysis on previous audit
events or be busy servicing any of it's clients.

The audit system does not emit complete information
for an event all at once, rather it emits partial messages
which are tagged with an event identifier. Each one of
these messages may describe one aspect of the event
(e.g. path information, AVC, etc.). There is no guaran-
tee the messages associated with a single event will ar-

rive in order, individual audit messages may be inter-
leaved with messages from other events. There is no
termination marker indicating when all the messages
belonging to an event have been emitted.

It then becomes the job of the listening software to re-
assemble the audit messages into complete events. To
do accomplish this messages upon receipt are placed in
a message cache grouped by their event identifier. The
event identifier which is shared by every message in the
event includes a time stamp. The message cache is pro-
cessed (swept) when either its size grows beyond a de-
fined limit or an interval of time has elapsed, whichever
comes first. Each set of messages sharing a common
event identifier are marked with a time-to-live when
they enter the cache. When the cache is swept any
event whose time-to-live has expired is assumed to be
complete and it is anticipated no more messages will
arrive for that event. The messages are then flushed
from the cache as a complete audit event. This solves
the problem of out of order messages and the lack of an
event termination delimiter.

If the audit system is rapidly producing messages many
events may be flushed from the cache at once during
the sweep operation. Complete events are then checked
to see if they are of interest to setroubleshoot (the audit
system audits many aspects of the kernel, not just those
related to SELinux and AVC's). If the event is of inter-
est the thread listening for audit messages places the
complete event on a queue so that it may immediately
return to the task of accepting audit messages without
blocking. The main setroubleshootd thread will some-
time in the future dequeue the event and run analysis on
it.

4.3 Processing an AVC denial

The analysis thread removes audit events from the
queue and iterates over the set of loaded analysis plug-
ins passing the event to each plug-in in succession.
Each plug-in can register its priority to control in what
order it will be called relative to other plug-ins.

Most plug-ins make heavy use of the source and target
contexts of the AVC but are free to examine and con-
sider all data in the audit event. If the plug-in recog-
nizes the denial it will generate a signature used to
identify this alert and attach a report to it. This report
contains descriptive information such as a summary, a

-3

verbose description, a verbose explanation of possible
solutions, and zero or more exact shell commands
which can be run to alleviate the problem. In addition
the plug-in gathers as much environmental information
as possible such as the software package which trig-
gered the denial and its version, the SELinux configura-
tion, SELinux policy version, OS version, etc.

The same condition which triggered an AVC denial
may occur multiple times, once for each instance the
triggering software violated the security policy. Each
instance must be recognized as belonging to the same
class of event so that individual event instances can be
coalesced into a single alert report with a tally of how
many times the event has triggered, the date/time it was
first triggered and the date/time of it's most recent fir-
ing.

4.4 Alert Signatures

A mechanism is needed to label the event the plug-in
recognized so that it can be treated as a specific in-
stance of a denial and then referred to throughout the
rest of the system by this label (e.g. a “handle” or
“key”). It is also vital this label be portable across sys-
tems so the same label will refer to the same issue no
matter where it is referenced. The label is referred to as
the signature of the event. It is the responsibility of
each plug-in to generate a signature when it provides a
report. This is because only the plug-in can know the
particular circumstances which uniquely define the
conditions common to all event instances of this class.

The signature is a subset of the event data. It is stripped
of any information specific to an event instance (e.g.
the process id or inode) but contains enough informa-
tion to distinguish it from any other event class. The
signature is represented as an XML document which
structures the event data. To further avoid possible col-
lisions between signatures generated by independent
plug-ins the signature contains an “analysis-id” making
it unique to the plug-in that generated it. Plug-ins are
free to use as many different analysis-id's as they wish
and to generate different reports based on the event in-
put. In practice most plug-ins use their own name for
every analysis-id. The descriptive report is a template
in which information specific to the event will be sub-
stituted.

5 Disposition of the alert report

If the plug-in returns a report this signals the event has

Audit
Dispatcher Lf)g
File

4 ¥
<AVC, database A> <AVC, database B>
pair pair

\/

Analysis Queue

Plug-in Report
(bound to database)

- Ttha
A B

setroublshootd views currently
selected database

browser

sealert / browser

Figure 2: Dataflow

been recognized and the analysis thread terminates the
plug-in iteration. The <signature,report> pair is then
passed to the database object currently bound to the
analysis request. The database object uses the signature
as a key to perform a lookup. If the lookup fails a new
object (siginfo) is created in the database indexed by
the signature. If the lookup succeeds returning an exist-
ing siginfo object then that siginfo object is updated by
incrementing its report count, recording the current
date/time, and copying in the descriptive information in
the report. The descriptive information is replaced so
only the most current information is presented to the
user.

The database object then signals to the server a new
alert has been recorded and the server will be able to
broadcast the alert to each connected client.

5.1 Client notification

Clients maintain a persistent connection to the server so
they may receive alerts as they occur. An important
role for the alert client is to ascertain if the user wishes
to be notified of this particular alert or whether the user
has elected to filter the alert. The filtering information
for whether a particular alert for a specific user is fil-
tered is maintained in the database attached as metadata
to the alert. This is done for two reasons. Firstly be-
cause this information must persist between client ses-
sions. Secondly, there are asynchronous timing issues
between when the user interacts at his leisure with the
first of multiple alerts which may be arriving at the
client and being queued. Because of hysteresis neither
the server nor the client can fully know the disposition
of any alert in the pipeline. The solution is to update the
filtering state in the server at the moment the user sets
it. Then when the next alert is pulled off the queue the
client queries the server asking if the alert in question is
currently filtered, this synchronizes the state between
the client, the user, and the server.

5.2 GUI notification of new alert

If the server responds the alert is not filtered a notifica-
tion is presented on the user's desktop. The notification
consists of a status icon indicating there is something
pending the user needs to address. The status icon is
unobtrusive so it does not interrupt the user's current
task or attention. However, because the presence of the
status icon in the status bar is unobtrusive the user may
miss it's arrival. To address this problem at the moment
the status icon is first presented a temporary notifica-
tion balloon is attached to it calling the users attention
to it's presence. The notification balloon will timeout
and be removed after a short duration (use of the notifi-
cation balloon can be configured).

SELinux

AVC denial, click icon to view

Hllustration 1: Alert Notification

5.3 GUI alert presentation

We experimented with different GUI's to present to the
user with when he clicked on the status icon for further
information. Originally the idea was to present a popup
dialog with just the current alert displayed. Experience
suggested this was suboptimal. What happened if there
were multiple alerts pending? The user would have to
dismiss the dialog only to re-invoke it again. So we
tried adding navigation buttons to cycle forward and
back through the alert list, but this was awkward. The
status icon is removed once the alert is viewed so how
could the user go back to a previously viewed alert
once the popup dialog had been dismissed? How could
the user change the filtering once an alert had been fil-
tered and dismissed? Some form of browser seemed
necessary to allow the user to view multiple alerts si-
multaneously, to sort, group, and search alerts, to
change the filtering, or to delete alerts which were no
longer of interest.

We experimented with several forms of browsing in-
cluding via HTTP served by the setroubleshootd server
and a custom browser acting as another client of the
server. We finally concluded the alert popup dialog was
an unnecessary redundant Ul component and that a sin-
gle browser would be presented when the user clicked
on the status icon. If the status icon was absent the
browser could be brought up via a desktop menu.

It is necessary for a process with a connection to the
setroubleshootd server to be continuously running to
receive alerts. The server connection, the alert notifica-
tions, and the browser GUI would all be contained in a
single process with the GUI components being visible
only at select moments.

5.4 Alert Browser

Fle Mew Edit Help

Fiiter | Date Count | Category ¥ | Summary E

M Sun 07 Jan 2007 04:02:05 AM EST 1 Authorization SELinux prevented perl from using NIS (yp)

Thu 25 Jan 2007 05:46:29 PM EST 26 FTP SELinux Is preventing the ftp daemon fror
Thu 25 jan 2007 05-46-20 PMEST =" g the Fp-ok

Thu 01 Feb 2007 04:05:57 PM EST

48 Unknown SELinux is preventing fsbin/busybox (dhcpc_t) *se

5]

o

u]

O Wed 03 Jan 2007 04:24:32 PM EST SELInux Is preventing /usr/sbin/vsftpd (ftp

(cnl I D]
SELinux

eri from usin g NIS (yp)

1 unknown

(1

D]

ri from using NIS (yp) for authentication. If you have configured the system to use NIS this access is
urrently allowed by SELinux. Otherwise this access may signal an intrusion

Changing the "allow_ypbind" boolean to true will allow this access: “setsebool -P allow_ypbind=1"

The following command will allow this access.
setsebool 1low_ypbind=1
ion

system_u:system_r-logwatch_t:SystemLow-SystemHigh
Target Context syster_u-object_r-var_yp_t

Target Objects: yp Ldir]

Affected RPM Packages:

Policy RPM selinux-policy-2.4 6-15 el5

Selinux Enabled True

Policy Type: targeted

MLS Enabled: True

Enforcing Mode Enforcing

Plugin Name: plugins allow_ypbind

Host Name: finch boston redhat.com

Platform Linux finch boston.redhat com 2.6.18-1.2910.el5 #1 SMP Fri Dec 15 22:18:11 EST 2006 i686 i686

Alert Count: 1 =

@ Audit Listener 717

Illustration 2: Browser

Mlustraion 2 shows the current implementation of the
browser. It is modeled after many popular email clients.
The window is divided into two panes, in the top pane
is a list of alerts with columns showing the time the
alert was last triggered, a count of how many times the
alert has triggered, the general category alert belongs to
and the summary of the alert. In addition there is a
check box to toggle filtering of the alert. Similar to an
email client the alerts which have not been viewed yet
are highlighted in a bold font. Once the alert has been
displayed in the detail pane for a number of seconds the
alert is permanently marked as having been viewed by
the user and the highlight is removed.

All of the columns are capable of being sorted so the
user can view alerts by age, by frequency, or grouped
by category. The category designation is useful for sce-
narios when the user suspects SELinux might be affect-
ing a particular software component such as his web
server or ftp server, thus he can group by category and
look for AVC denials associated with that component.

The bottom pane shows the detailed information for the
currently selected alert much like an email message
would be displayed in an email client. At the bottom of
the window is a status area for messages, an icon dis-
playing the connection status with the server, and a
progress bar for long duration operations such as load-
ing data or scanning log files. Each alert is capable of
being sent to a printer, saved to a file, or deleted.

5.5 Connection states, databases

The sealert client which contains the browser must
maintain a persistent connection to the setroubleshootd
server in order to receive alerts. It is possible for either
end of the connection to go down, this is especially true
if the setroubleshootd service is restarted. The sealert
client detects the connection loss and periodically at-
tempts to reconnect. These connection attempts are dis-
played in the status area of the browser along with an
icon showing the connection state. When the connec-
tion is lost the browser clears all of its data to further
reinforce to the user nothing is known at this moment.

The browser presents a view of a single alert database,
the browser is said to be visiting that database. The
database of alerts received from the audit system is the
default database. It is possible to scan log files looking
for AVC denials as well. In this scenario a new
database is created to store the alert reports generated
during the log file scan thus aggregating them as an in-
dependent set of alerts. Equally the browser can open
an alert database on another node. Selection of which
alert database is currently being viewed in the browser
is analogous to the selection of a folder in an email
client.

5.6 Email alerts

In addition to being notified of alerts via a desktop GUI
the system may be configured to send alerts via email
to designated recipients. Email alerts may be preferable
when a desktop session is not present, when the user
does not want a GUI interaction, when he wishes to cat-
alog alerts (i.e. in a mail folder), or when he wishes to
monitor a remote system. The email is formatted in
both HTML and plain text.

6 Remote monitoring

The architecture supports remote monitoring such as
might be desired by a system administrator who man-
ages a collection of servers or a system administrator
who may wish to remotely diagnose problems reported
by one of their users.

There are two ways remote monitoring can be per-
formed. Alerts can be dispatched via email where a va-

-6-

riety of email tools can be used to aggregate, filter, or
further disseminate the information. Or, because the ar-
chitecture is inherently a client/server model a remote
client via the same browser interface can be connected
to a setroubleshootd server running on another node.
By default the setroubleshootd server only listens on
UNIX domain sockets thus it can only be connected to
from a client on the same node. This choice of default
assures greater security, however, the setroubleshootd
server can be configured to listen on inet sockets thus
affording greater flexibility.

It should be noted the client/server model also allows
for the possibility of authoring a module for any num-
ber of system monitoring tools. The module would sim-
ply connect to the setroubleshootd server as would any
other client and then translate the alert into a format
suitable for the monitoring tool. The fact that all data in
the setroubleshoot architecture is stored and transported
in XML should help make data integration with other
components easy.

Local Case Remote Case

setroubleshootd setroubleshootd

A

Node 1

A 4

sealert / browser sealert / browser

Node 2

Email Alert
I

Local or Remote

Figure 3: Operational Modes
7 Future work

The design of setroubleshoot and it's model of labeling
classes of AVC denials with a signature portable across
databases and systems sets it up for future functionality.
For example when the AVC denial is suspected to be a
bug in either the policy or an application a central serv-
er could be contacted to query if this issue has been
seen before and to answer some questions. If it has
been reported then what bug reports are open against

it? Is there a known resolution to the issue? Are there
available updates which could be applied to resolve the
issue? If the issue had not been reported then a bug re-
port could be automatically generated containing the
contents of the plug-in report. The sealert client could
periodically query the central server for alerts resident
in its database to see if a resolution has been made
available and then alert the user he may wish to apply
the update. All of these features are dependent on the
notion of a portable signature not tied to any given ma-
chine.

The current set of analysis plug-in's are geared toward
covering the entire set of policy booleans. This is be-
cause a very common case of undesired AVC denials is
the ignorance of how to tailor the policy to a particular
installation. A richer set of analysis plug-in's will hope-
fully be developed by the community to broaden the
coverage and and fine tune the granularity of informa-
tional messages. It is also anticipated that as bugs in ei-
ther applications or the policy are diagnosed a plug-in
will be authored to identify that issue helping to smooth
the path for the next person who stumbles on the same
problem.

8 Summary

An intuitive tool has been developed which communi-
cates with a user in a friendly manner to alert them in
real time when the SELinux system has denied access
to some resource. Armed with this awareness the user
can then take corrective action. The tool is very flexible
in it's deployment model and is amenable to extension.
We hope setroubleshoot will enhance the use experi-
ence and drive the adoption of SELinux by removing
some of the barriers to it's acceptance.

9 Acknowledgments

Daniel Walsh contributed enormously with his insights
and implementation. Karl MacMillian was a source of
SELinux knowledge, contributed code, and was instru-
mental in keeping the effort focused. The entire set of
analysis plug-in's were authored by both Dan and Karl
whose knowledge of SELinux operation and experience
with AVC denials were key in providing the necessary
end user information.

http://hosted.fedoraproject.org/projects/setroubleshoot

-7 -

